» » Google использует глубокое обучение для диагностики заболеваний (и весьма успешно)

Google использует глубокое обучение для диагностики заболеваний (и весьма успешно)

Автор: eminsk от 3-12-2016, 13:04
Google использует глубокое обучение для диагностики заболеваний (и весьма успешно)
Если вы дадите компьютеру достаточно фотографий и нужный алгоритм, он сможет научиться видеть. А если на фотографиях будут поврежденные глаза, компьютер сможет научиться диагностировать заболевания глаз лучше людей. Примерно треть больных сахарным диабетом имеют такого рода повреждения, и если их не лечить, они могут привести к постоянной слепоте. Но в случае своевременного обнаружения они вполне поддаются лечению. Проблема в том, что многие люди не имеют доступа к офтальмологу, который мог бы диагностировать их. В мире 387 миллионов больных диабетом людей, которые нуждаются в регулярном наблюдении специалиста, который мог бы вовремя выявить проблему. Современные профилактические методы недостаточно хороши — диабетическая ретинопатия является основной причиной ухудшения зрения и слепоты у трудоспособного населения. Поэтому Google разработала способ использовать глубокое машинное обучение, чтобы научить нейронную сеть обнаруживать диабетическую ретинопатию по фотографиям глаз пациентов. Результаты работы были опубликованы в журнале Американской медицинской ассоциации во вторник. Нейронная сеть — это в некотором роде искусственный мозг, хотя и простой. Показывая ей гигантский набор изображений пациентов с повреждениями сетчатки глаза и без, инженеры могут обучить сеть различать глаза больных и здоровых. После обучения команда Google протестировала нейронную сеть, чтобы узнать, сможет ли алгоритм обнаружить диабетическую ретинопатию на уровне офтальмолога, который видел те же снимки. Алгоритм Google показал себя немного лучше человека-офтальмолога, что свидетельствует о том, что нейронная сеть может помочь пациентам в будущем, ну или хотя бы помочь врачам в процессе диагностики. Врачи уже используют технологию подобного рода для диагностирования болезней сердца и некоторых видов рака. В настоящее время эта технология не так продвинута, как новый алгоритм глубокого обучения Google, но работает на тех же принципах. Врачи выявляют такие проблемы, как закупорка артерий при болезни сердца и патологические наросты при раке, глядя на снимки вашего тела, рентгеновские или КТ. Специалист по таким снимкам — радиолог — имеет многолетний опыт выявления проблемных зон по фотографиям. И все же взгляд человека не совершенный, а люди склонны ошибаться. Если бы компьютер мог проделывать то же самое, он почти наверняка превзошел бы человека в умении находить раковые наросты или заблокированные артерии. Логичным решением было бы научить компьютер отличать необычную картинку от обычной. Казалось бы, это просто.
Google использует глубокое обучение для диагностики заболеваний (и весьма успешно)
Проблема в том, что компьютеры сложнее распознают снимки, чем человеческий мозг. Показывая изображение компьютеру, вы видите, что на нем женщина на пляже. Для компьютера этот пейзаж — лишь набор пикселей. Вы видите ее очки и шляпку. Вы знаете, что на ней зеленое бикини с белыми цветочками, что небо слегка пасмурное. Компьютер ничего этого не видит, если не обладает компьютерным зрением. Компьютерное зрение — это в некотором роде попытка научить компьютеры «видеть». Диагностика болезней по снимкам — это простейшая форма компьютерного зрения, но ее недостаточно, чтобы заменить пару человеческих глаз. Google планирует это изменить. У компании есть прогресс в области компьютерного зрения, отчасти из-за доступа к огромным объемам данных. Вы уже можете наблюдать его в работе, поскольку Google использует свое компьютерное зрение для организации ваших личных изображений в Google Photos. В них можно найти, скажем, «картинки со снегом» или «картинки собак». Алгоритм Google находит нужное на снимках и сортирует для вас. Диабетическая ретинопатия — одно из первых диагностических приложений, которое создала компания Google по глубокому обучению компьютерного зрения. Другие группы работают над похожими проектами. Корнелльский университет учит компьютеры диагностировать болезни легких, сердца и костей. Финская группа работает над методами диагностики малярии по снимкам крови, а IBM давно работает над алгоритмом для обнаружения рака кожи. Однажды компьютерное зрение и глубокое обучение изменит процесс диагностирования пациентов. Но FDA пока не одобрила использование такого рода технологий в медицине. Для начала придется определить, как обеспечивать безопасную работу нейронных сетей. А пока можно поискать изображения собак и кошек при помощи нейронной сети Google и превратить их в кошмары. Google использует глубокое обучение для диагностики заболеваний (и весьма успешно) Илья Хель

Hi-News.ru

Теги: Медицина

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Комментарии:

Оставить комментарий
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.